
ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

135

RESEARCH ON ROBOT MANIPULATOR PATH PLANNING

BASED ON DELAUNAY MAP

Jiali PI
1
*, Weiming ZHANG

1
, Dongmei ZHANG

1
, Xueqing LI

2
, Binbin YU

3

1
Army Logistics University of PLA, Chongqing, 401331, China

2
Sichuan International Studies University, Chongqing, 400031, China

3
91943 troops of PLA, Handan 056000, China

E-mail: pijiali1991@163.com

ABSTRACT: This paper aims to find an optimal obstacle-free path for robot manipulator.

Therefore, the global planning and the local planning were combined into an organic whole.

First, the Monte-Carlo method was adopted to construct the Delaunay tetrahedral grid map.

Then, the Floyd algorithm was employed to find the path of the collision-free global shortest

path of the Cartesian space in the Delaunay map, that is, develop an obstacle avoidance path

planning algorithm was developed for robot manipulator. Numerical simulations and

experiments show that the path planning algorithm can effectively optimize the path of the robot

manipulator in the Cartesian space and the joint angular space. Suffice it to say that the

algorithm has great application potential in the robot manipulator control.

KEYWORDS: robot manipulator, space path planning, map construction

1 INTRODUCTION

The manufacturing assembly is a resource-

intensive operation. It consumes lots of manpower

and time. A possible way to improve the situation

lies in the development automatic robot assembly.

Nevertheless, it is still difficult to apply robot

assembly technology in actual production, due to

the complex operation path and the lack of accurate

and efficient path planning ability of existing robot

manipulators. This calls for the design of a new path

planning algorithm that can enhance the rationality,

timeliness and adaptability of robot manipulator

path planning.

In the movement space of a robot manipulator,

the path planning problem can be described as

finding the optimal or close-to-optimal path from

the initial state to the target state, provided that the

robot manipulator will not be stuck by any obstacle.

There are mainly three kinds of methods for robot

manipulator path planning:

First, the algorithms based on artificial

intelligence algorithms, namely ant colony

algorithm (Shi et al., 2014), fuzzy algorithm (Chen

and Zhu, 2011), fish swarm algorithm (Liang et al.,

2016; Xu and Zhu, 2012) and genetic algorithm

(Keshtkar, 2017; Qi et al., 2014; Gómez-Bravo et

al., 2012; Wang and Xie, 2016).

Second, the algorithms based on objective

function optimization, including gradient projection

method (Fang and Zhao, 2010), artificial potential

field method (Wang et al., 2015), sequential

quadratic programming (nonlinear optimization)

(Rubio et al., 2016), and parameter manipulability

optimization (Lee and Song, 2016).

The above path planning algorithms are featured

by heavy computation, high complexity and poor

portability. In particular, the first type of algorithms

need to correct their parameters based on samples,

and cannot avoid the trap of local optimum.

Third, the algorithms based on grid maps and

moving rules, such as Floyd algorithm, A~*

algorithm, and Q learning algorithm (Qian et al.,

2015). Among them, the Floyd algorithm is a global

optimization algorithm with global optimal features.

The advantage is that the shortest path obtained by

the algorithm must be the shortest path of the

Cartesian space in the whole grid (Zhang et al.,

2017).

In this paper, the global planning and the local

planning were combined into an organic whole.

First, the Monte-Carlo method was adopted to

construct the Delaunay tetrahedral grid map (the

Delaunay map). Then, the Floyd algorithm was

employed to find the path of the collision-free

global shortest path of the Cartesian space in the

Delaunay map.

2 MAPPING RELATIONSHIP

BETWEEN THE CARTESIAN SPACE

AND THE JOINT ANGULAR SPACE

OF THE ROBOT MANIPULATOR

The Delaunay map was built on both the

Cartesian space and the joint angular space by

forward kinematic equation 𝑇 0
4 and inverse

kinematics equation inverse (x, y, z). The robot

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

136

manipulator has 5 degrees-of-freedom (DOF). The

D-H coordinates and parameters of the manipulator

are shown in Figure 1 and Table 1, respectively.

Z1

Z2

Z3

Z4

Z5

X3

X2

X1

X4

X5

L1

Figure 1. Kinematic scheme of 5 DOF manipulator

Table 1. Denavit-Hartenberg parameters of the 5

DOF manipulator in Figure 1.

i
Twist angle

𝛼𝑖−1

Link length

𝑎𝑖−1

Link

offset 𝑑𝑖

Joint

angle 𝜃𝑖

1 0 0 L1 1

2 /2 0 0 2

3 0 L2 0 3

4 0 L3 0 4

5 -/2 0 L4 5

The D-H transform equation is generally

expressed as:
𝑇𝑖

𝑖−1 =

[

cos 𝜃𝑖 −sin 𝜃𝑖 0 𝑎𝑖−1

cos 𝛼𝑖−1 sin 𝜃𝑖 cos 𝛼𝑖−1 cos 𝜃𝑖 −sin 𝛼𝑖−1 −𝑑𝑖 sin 𝛼𝑖−1

sin 𝛼𝑖−1 sin 𝜃𝑖 sin 𝛼𝑖−1 cos 𝜃𝑖 cos 𝛼𝑖−1 𝑑𝑖 cos𝛼𝑖−1

0 0 0 1

].

The forward kinematics equation of the robot

manipulator was obtained by multiplying the D-H

equation of each link transformation:

 𝑇0
4 = [

𝑅 𝑃
0 1

] = [

𝑟11 𝑟12 𝑟13 𝑥
𝑟21 𝑟22 𝑟23 𝑦
𝑟31 𝑟32 𝑟33 𝑧
0 0 0 0

].

where:

𝑥 = cos(𝜃1)(𝐿3 cos(𝜃2 + 𝜃3) + 𝐿2 cos(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4)),

𝑦 = sin(𝜃1)(𝐿3 cos(𝜃2 + 𝜃3) + 𝐿2 cos(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4)), and

𝑧 = 𝐿1 + 𝐿3sin(𝜃2 + 𝜃3) + 𝐿2 sin(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4).

The forward kinematics equation represents the

mapping relationship between the joint angular

space and the Cartesian space. Then, the inverse

kinematic equations were derived from the forward

kinetic equation 𝑇0
4 . The link transformation matrix

𝐿1 was moved to the left of the forward kinematics

equation, 𝑇0
4 = 𝑇0

1 𝑇1
2 𝑇2

3 𝑇3
4 . Since the (2, 4)

elements on both sides of the equation are equal,

0 = (𝑝𝑦𝑐1 − 𝑝𝑥𝑠1)/(2𝑐1
2 − 1).

𝜃1 = tan−1(
𝑝𝑦

𝑝𝑥
)

(1)

Next, the link transformation matrices 𝐿2 and 𝐿3

were moved to the left side of the forward

kinematics equation. Sixteen elements of equal

values were found by comparing the left and right

sides of the equation: cos(𝜃𝑖) and sin(𝜃𝑖) are

written in 𝑐𝑖 and 𝑠𝑖, cos(𝜃𝑖 + 𝜃𝑗) and sin(𝜃𝑖 + 𝜃𝑗)

are written in 𝑐𝑖𝑗 and 𝑠𝑖𝑗, and so on. Hence, the right

side of the equation can be written as:

[

𝑐234 𝑠234 0 𝐿3𝑐23 + 𝐿2𝑐2

0 0 −1 0
𝑠234 𝑐234 0 𝐿3𝑠23 + 𝐿2𝑠2

0 0 0 1

].

The left side of the equation was divided into

two sub-matrices:

[

𝑟11𝑐1𝑐5 − 𝑟12𝑐1𝑠5 + 𝑟21𝑐5𝑠1 − 𝑟22𝑠1𝑠5 𝑟13𝑐1 + 𝑟23𝑠1
𝑟21𝑐1𝑐5 − 𝑟11𝑐5𝑠1 − 𝑟22𝑐1𝑠5 + 𝑟12𝑠1𝑠5 𝑟23𝑐1 − 𝑟13𝑠1

𝑟31𝑐5 − 𝑟32𝑠5 𝑟33

0 0

]

[

−𝑟12𝑐1𝑐5 − 𝑟12𝑐1𝑠5 − 𝑟22𝑐5𝑠1 − 𝑟21𝑠1𝑠5 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝐿4𝑟23𝑠1 − 𝐿4𝑟13𝑐1
𝑟12𝑐5𝑠1 − 𝑟22𝑐1𝑐5 − 𝑟21𝑐1𝑠5 + 𝑟11𝑠1𝑠5 𝑝𝑦𝑐1 − 𝑝𝑥𝑠1 + 𝐿4𝑟13𝑠1 − 𝐿4𝑟23𝑐1

−𝑟32𝑐5 − 𝑟31𝑠5 𝑝𝑧 − 𝐿1 − 𝐿4𝑟33

0 1

]

The following equations can be obtained by

equalizing (3, 3) elements on both sides of the

matrix.

Solving 0 = −𝑟32𝑐5 − 𝑟31𝑠5 yields

𝜃5 = − tan−1 𝑟32

𝑟31

(2)

According to the equation on the left and right

sides of the matrix elements in the fourth column,

two equations were sorted out as:

𝐿3𝑐23 + 𝐿2𝑐2 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝐿4𝑟23𝑠1 − 𝐿4𝑟13𝑐1

(3)

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

137

𝐿3𝑠23 + 𝐿2𝑠2 = 𝑝𝑧 − 𝐿1 − 𝐿4𝑟33
(4)

With the sum of two equations’ square, it is

found that 𝜃3 can be solved. Then, 𝜃3 was

substituted into any equation to yield 𝜃2. 𝜃3 and 𝜃2

were substituted into to yield 𝜃4. At this point, 5

inverse kinematics equations (1-5) 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑥, 𝑦, 𝑧)

were derived to depict the mapping relationship of

robot manipulator between the Cartesian space and

the joint angular space.

𝑐234 = 𝑟33
(5)

3 OBSTACLE COLLISION

DETECTION

Following the concept of “arm plane” proposed

by Kreutz-Delgado et al., the arm plane was defined

with such three points as the shoulder joint, the

elbow joint and the wrist joint (Jiang et al., 2013)

(Figures 2~3). In this way, the collision detection

problem was transformed into an obstacle

intersection problem in the arm plane. The

intersection of the robot manipulator and the

obstacle is essentially the polyline intersection of 2

planes (Dong et al., 2017)

Figure 3 shows the polylines in two planes, i.e.

the obstacle plane and the arm plane. If the

polylines of the 2 planes intersect with each other, it

means the robot manipulator has collided into an

obstacle. Then, a four-step process was executed to

calculate the intersection line between the two

planes, determine if an intersection occurs by rapid

rejection test and cross test, and identify the

intersection position by collision point calculation.

(1) Determination of polylines on the obstacle

plane

The obstacle surface was approximated by a

number of planes to find the polylines

𝑞1𝑞2according to the simultaneous equations of the

obstacle plane and the robot arm plane. Similarly,

the polylines on the robot arm plane 𝑝1𝑝2 were also

obtained.

(2) Rapid rejection test

Let the rectangle with 𝑝1𝑝2 as the diagonal line

be 𝑅1, and the rectangle with 𝑞1𝑞2 as the diagonal

line be 𝑅2. If there is no intersection between 𝑅1and

𝑅2, the two lines will not have an intersection point

(Figure 4).

(3) Cross test

As shown in

Figure 4, the intersection means 𝑝1𝑝2 and 𝑞1𝑞2

must cross each other. The vector cross product

determines whether the two lines cross by its

geometric meaning. If 𝑝1𝑝2 crosses 𝑞1𝑞2, the

vectors 𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ and 𝑞1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ are on both sides of vector

𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, namely: 𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ ∙ 𝑞2𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ < 0

If𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ = 0, 𝑝1𝑝2 and 𝑞1𝑞2 are collinear.

Similarly, the intersection of 𝑝1𝑝2 and 𝑞1𝑞2 can be

judged by: 𝑝1𝑞1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ × 𝑝1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ ∙ 𝑞2𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ × 𝑝1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ < 0

(1) Collision point calculation

Let us denote the plane determined by 𝑝1𝑝2 and

𝑞1𝑞2 as plane Π. Among the planes that are

perpendicular to plane Π, the one passing through

 𝑝1𝑝2 is denoted as plane Π1, and the one passing

through 𝑞1𝑞2 is denoted as plane Π2. If there is a

common point for the three planes, it means the

three planes intersect each other, and that 𝑝1𝑝2

crosses 𝑞1𝑞2. Then, the collision point can be

obtained by the equations of these planes.

Figure 2. Three-dimensional model of manipulator

obstacle

manipulator

obstacle

Figure 3. Projection Model of Robot manipulator and

obstacle in Arm Plane

Figure 4. A case of rapid rejection test and crossover

test

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

138

4 MAP BUILDING FOR PATH

PLANNING

To build a map for path planning, the

surrounding area of the robot must be divided into

free movement space and restricted space. The

popular map building methods include road

marking and grid meshing (Zhu and Yan, 2010). To

find a feasible path map for finding the shortest path

in space, the working space of the robot

manipulator should be converted to the feasible path

in light of the manipulator model and obstacle

model (Jia, 2010).

Monte-Carlo point cloud data generation

The random point cloud data generated by the

Monte-Carlo method can directly map the points in

the joint angular space to the Cartesian space. If the

cloud is dense enough, the manipulator workspace

can be well fitted. Instead of the nonlinear inverse

kinematics equation, the forward kinematics

equation was relied on to easily obtain the position

data of each discrete point in the joint angular space

and the Cartesian space (Tian et al., 2013).

Focusing on each joint angle feasible region

(𝜃min, 𝜃max), the point cloud data were generated

based on the uniform distribution of random

number function 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝜃min, 𝜃max, 𝑛) of the

Monte-Carlo algorithm. The joint point set

{𝜃1, 𝜃2, 𝜃3, 𝜃4} was generated in the joint angular

space and substituted into the D-H forward

kinematics equation 𝑇0
4 to get the Cartesian

coordinates of the manipulator set {𝑥, 𝑦, 𝑧}.
These random discrete values are the point of the

Cartesian workspace of the robot manipulator

combined with the angle of the random discrete

point in the joint angular space.

As shown in Figure 5, the robot manipulator

often does not collide into obstacles at the start of

the operation. In this case, the detection plane

perpendicular to the arm plane should be placed at

the middle of the obstacle and the manipulator (Liu

and Wang, 1996). Once the manipulator passes

through the detection plane, it is necessary to

determine if there is a collision by geometric

method. The detection plane is parallel to the

tangent plane of the obstacle, and can be expressed

as 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. According to

Figure 6, 𝑑 is the distance limit of the detection

plane from the obstacle, and the length of the 3

connecting links is 𝐿2 + 𝐿3 + 𝐿4. Assuming that

the connecting links bend as the manipulator moves

to the tangent plane of the obstacle, the latter will

move by 𝑑 along the normal vector direction. Then,

the detection plane equation is 𝑝𝑙𝑎𝑛𝑒𝑡𝑒𝑠𝑡: 𝑎 (𝑥 +
𝑎

√𝑎2+𝑏2
𝑑) + 𝑏 (𝑦 +

𝑏

√𝑎2+𝑏2
𝑑) + c = 0

Figure 5. Three-dimensional schematic diagram of

the detection plane

obstacle

Tangent planeDetection plane

d

Figure 6. Three-dimensional Schematic Diagram of

Detection Plane

Figure 7. Monte-Carlo points cloud data

As shown in

Figure 7, the detection plane divides the point

cloud into two parts. On the collision side to be

detected by the detection plane, the obstacle

collision detection function 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜃1, 𝜃2, 𝜃3, 𝜃4)
determines the feasibility of the discrete point of the

point cloud data. If the function is valid at the

discrete point, the robot manipulator will collide

into the obstacle during the movement, and the

discrete point should be removed. By substituting

the filtered discrete joint points {𝜃1, 𝜃2, 𝜃3, 𝜃4} into

equation 𝑇0
4 , the discrete point cloud can be

obtained as:

 Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}.

Construction of Delaunay tetrahedral grid map

based on point cloud data

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

138

As its name suggests, the Delaunay tetrahedral

map is created by Delaunay tetrahedrons. It is a

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

139

feasible path map of connecting lines between

the path points. Based on point cloud data, the map

can approximate the original workspace with

accurate grids, fine structure, low redundancy, high

storage efficiency and convenience in update. The

rule of Delaunay tetrahedral partition is easy and

effective. Each tetrahedron is set up by four closest

points, and do not intersect with each other. The

even meshing of the cloud data lays a solid basis for

Floyd path planning algorithm.

For a 2D plane, the Delaunay triangular map is

often generated by point-by-point insertion and

incremental diffusion. The point-by-point insertion

has been implemented extensively, thanks to its

time and space efficiency. For instance, the method

is incorporated into Matlab to compute Delaunay

division for triangular network generation on the

discrete cloud. The point-by-point insertion is

implemented in the following steps. First, all the

discrete points are traversed to find the set of

convex hulls, and the outermost edge is computed

by the Qhull algorithm (Xiao et al., 2010). Then, the

triangular grids are generated by incremental

insertion in convex hulls. After that, the discrete

points are inserted into the new triangles in turn,

according to the rule of Delaunay

circumcircle/circumsphere. In this way, the

Delaunay triangular map is gradually formed

(Dong, 2005).

In this research, the 2D Delaunay triangulation

was promoted to 3D Delaunay tetrahedralization.

First, the internal structure was also subdivided, but

into tetrahedrons. The tetrahedral subdivision

algorithm is similar to the 2D Delaunay

trigonometric algorithm. The new vertex was

gradually added to the set of spatial points before

applying the rule of Delaunay circumcircle /

circumsphere. When a new point was added to the

Delaunay grid, the new elements whose

circumcircle passes through the point were removed

to form a new section. In this way, a Delaunay

tetrahedral grid map was formed eventually (Figure

8). Then, the vertices of the tetrahedrons in the

Delaunay map were numbered, and the map of

feasible paths for robot manipulator space

𝐷𝑒𝑙𝑎𝑢𝑛𝑛𝑦(𝑥, 𝑦, 𝑧) was formed (Figure 9).

Figure 8. Delaunay Triangle cell grid

5 OBSTACLE AVOIDANCE PATH

PLANNING ALGORITHM

The path planning algorithm is often

implemented by path search in the Cartesian space.

The inverse kinematics equation 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑥, 𝑦, 𝑧)

should be called. However, the path search has to

deal with a gigantic amount of data, and may fall

into the dead loop. To solve the problem, the Floyd

algorithm was introduced to optimize the individual

path points, and realize the coarse and fine

adjustments of the obstacle at different positions of

the manipulator.

Floyd algorithm based on Delaunay grid map

Based on the Delaunay grid map, the Floyd

method can compute the joint angle data of the path

point directly from point cloud
 Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}, rather

than call the inverse kinematics equation multiple

times. In this way, the method greatly reduces the

complexity and computing load of the path planning

for the robot manipulator.

The Delaunay grid transforms the discrete cloud

into a geometric body of tetrahedrons. Concerning

the distance matrix 𝑑𝑖𝑠𝑡 of tetrahedral edge length,

the Floyd dynamic programming aims to find the

starting point and the target point. Let

𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖](𝑗) be the length of the shortest path

from starting point 𝑖 to target point 𝑗, with 𝑘 being

any tetrahedral vertex passing through the path. For

any k> 0, there are two possible reasons that the

shortest path between 𝑖 and 𝑗 does not exceed 𝑘:

the path either contains the intermediate vertex 𝑘 or

does not contain the vertex. In the first case, the

path length equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑘] +
𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑘](𝑗). In the second case, the path

length equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑘] + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑘](𝑗).
Following this train of thought, the Floyd dynamic

programming algorithm was established with

array 𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖](𝑗) being the shortest path length

in the iterative process (

Figure 9). The iteration formula is as follows:

{
𝑙𝑒𝑛𝑔𝑡ℎ0[𝑖][𝑗] = 𝑑𝑖𝑠𝑡𝑖𝑗

𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖][𝑗] = min{𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗], 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗] + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗]} 0 ≤ 𝑘 ≤ 𝑛 − 1

file:///D:/Users/Administrator/AppData/Local/Youdao/Dict/7.5.0.0/resultui/dict/
file:///D:/Users/Administrator/AppData/Local/Youdao/Dict/7.5.0.0/resultui/dict/

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

140

Figure 9. Delaunay tetrahedral mesh map

Then, the shortest path between the starting and

target points was sought for on the Delaunay

tetrahedral grid map, and the joint angle of all path

points were obtained by the Monte-Carlo point

cloud Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}.
Path point optimization algorithm

The planned path points must differ greatly in

joint angle, due to the random generation of the

angle by Monte-Carlo method, and the non-unique

mapping relationship between the Cartesian space

and the joint angular space. Thus, the inverse

kinematics equation was applied to optimize the

joint angle with the minimum sum of adjacent joint

angle difference 𝑒1
𝑖 and the target point joint angle

difference 𝑒2
𝑖 . The algorithm is introduced in details

below.

Path refining algorithm

Generate cloud points data and Delaunay

mesh map

Start

Plan a shortest route by Floyd method on

Delaunay mesh map

Adjust the joint angle of waypoints pointer

by function Modify(θ1θ2θ3θ4), move to

the second point

Delete the point which collide with the

barrier

If the difference of joint angle between

Floyd(pointer) and θ[i] is smaller than step

Store the joint angle Floyd(pointer) to θ[i], add 1to

i, move to next waypoint of Floyd plan,

If the current

point is target

Add more cloud points,

set initial joint angle

data withθ[i]

Acquire the environmental information, set

i = 1, set starting joint angle θ[1]

No
No

Succed

Figure 10. Flow chart of path refining algorithm

For the same reasons in 5.2, the joint angle

trajectory is not as smooth and continuous as

expected, concerning the optimal path obtained by

Floyd algorithm on the Delaunay map. To

overcome the defect, the local path points were

optimized and the joint angle was adjusted by

𝑚𝑜𝑑𝑖𝑓𝑦(𝜃1, 𝜃2, 𝜃3, 𝜃4) function. Meanwhile, the

path points were traced back to re-plan the path

lines if the joint angle of these points fluctuated

significantly.

Based on the Monte-Carlo point cloud data, the

Floyd algorithm was employed to plan the path

sequence of the current point to the target point in

the Delaunay grid map until the accuracy reached

𝑒1
𝑖 < 𝑠𝑡𝑒𝑝 and the target point was arrived at

(Figure 10).

The path refining algorithm enhances the

convergence quality and speed by changing the

intermediate path point and correcting the path. In

view of the random generation of Monte-Carlo

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

141

point cloud data, the global optimal path can be

produced by making full use of the known

environmental information and random obstacle

information.

6 SIMULATION AND EXPERIMENT

Overview

To verify the robot manipulator path planning

algorithm based on Delaunay map, a 5-DOF space

manipulator was taken as the target of simulation.

The D-H coordinates and parameters of the

manipulator are shown in Figure 11 and Table 2,

respectively. The obstacle was simulated by a cube

model (length: 0.1m; width: 0.13m; height 0.1m)

(Figure 12).

Table 2. Defined Denavit-Hartenberg parameters

Link 𝐿1 𝐿2 𝐿3 𝐿4

Length(cm) 10.3 10.3 12.7 11.5

The kinematics analysis was performed in a

simulation system programmed in Matlab. The

system ran on a computer (2.5 GHz CPU; 4GB

RAM). The Cartesian coordinates of the initial path

point were (5, 10, 20) with a joint angle of (1.11,

1.23, -0.13, -4.07), and the target path point

coordinates were (0, 20, 0) with a joint angle of

(1.57, 1.02, -1.82, -1.82). Hence, the joint angle

differenceΔ𝜃 between the initial point and the target

joint was (0.46, -0.21, -1.68, 2.64). The differences

Δ𝜃4and Δ𝜃3 were the larger ones between the two

points. After obtaining the adjacent joint angle

difference 𝑒1
𝑖 , the author setΔ𝜃3 with 𝑎𝑏𝑠(𝜃3

𝑖 −

𝜃3
𝑖−1)/5, set Δ𝜃4 with 𝑎𝑏𝑠(𝜃4

𝑖 − 𝜃4
𝑖−1)/10 and

𝑠𝑡𝑒𝑝 = 0.8. Table 3 shows the joint angle of the

path point generated by the first iteration of the path

optimization.

Table 3. The path point of the joint angle after first

path planning

Joint angle of waypoint 𝜃1 𝜃2 𝜃3 𝜃4

1 1.11 1.23 -0.13 -4.07

2 1.17 0.96 -0.03 -4.47

3 1.67 0.87 -0.98 -4.23

4 1.69 1.21 -1.52 -3.55

5 1.58 1.56 -1.87 -2.84

6 1.73 1.54 -1.89 -2.38

7 1.57 1.02 -1.82 -1.82

Figure 11. End of the actuator track diagram

Figure 12. Optimized Robot manipulator pose series

during a path to avoid obstacle

For batter accuracy, at the completion of the first

path planning, the step size was reduced to step/2

from the point int((i+1)/2) of the first path, and the

first path was divided into two segments: (1,

int((i+1)/2) and (int((i+1)/2, i). The initially planned

path and the optimized path are given in Figures 11

and 12, respectively.

6.1 Experimental validation

The target manipulator is an industrial serial

manipulator, whose features have been extensively

explored in the reference (Gómez-Bravo et al.,

2012). Thus, the experimental validation mainly

focuses on the application of our algorithm on the

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

142

arm end movement along the planned path. The

obstacle was a 0.1m0.1m0.13m cuboid. The end

points of the manipulator were set as point (5, 10,

20) and point (0, 20, 0). Under the given conditions,

our algorithm was implemented on the serial

manipulator. The angle point sequence of the path

points is recorded in Figure 13.

During the test, the manipulator moved swiftly

and smoothly from the starting point to the target

point without hitting the obstacle. The results prove

that speed and effect of our obstacle avoidance path

planning algorithm. Suffice it to say that the

algorithm has great application potential in the

robot manipulator control.

Figure 13. Snapshots of manipulator operation during

a path to avoid a cylindrical obstacle

7 CONCLUSION

In this paper, the global planning and the local

planning were combined into an organic whole.

First, the Monte-Carlo method was adopted to

construct the Delaunay tetrahedral grid map. Then,

the Floyd algorithm was employed to find the path

of the collision-free global shortest path of the

Cartesian space in the Delaunay map. In other

words, an obstacle avoidance path planning

algorithm was developed for robot manipulator.

The innovation points of this research are as

follows. First, the joint angle of the Cartesian space

point was directly acquired and the optimization

range was narrowed down by using the point cloud

data obtained by Monte-Carlo method as the path

points in path planning. Second, the Delaunay

tetrahedral mesh map quickly generated the feasible

paths of the manipulator in the Cartesian space.

Third, the map generated by the Monte-Carlo

method made full use of the known environmental

information, produced the global optimal path, and

tackled the obstacle information in a timely manner.

Fourth, the repeated use of our algorithm optimized

the path points with severely fluctuating joint

angles, and led to the satisfactory trajectory of the

robot manipulator.

However, this research has not predicted the

next state of the manipulator in an environment with

moving obstacles. In light of our algorithm, the

long-term moving-obstacle avoidance path planning

will be discussed in further research.

8 ACKNOWLEDGEMENTS

This work is supported primarily by the National

Key R&D Program of China with

no.2017YFC0806608, Funding of Innovation

Program for Graduate Education of Army Logistics

University of PLA.

9 REFERENCES

► Chen, W. D., Zhu, Q. G. (2011). Mobile

Robot Path Planning Based on Fuzzy

Algorithms, Acta Electronica Sinica, 39(4), 971-

974.

► Xu, X. Q., Zhu, Q. B. (2012). Multi Artificial

Fish-Swarm Algorithm and a Rule Library

Based Dynamic Collision Avoidance Algorithm

for Robot Path Planning in a Dynamic

Environment, Acta Electronica Sinica, 40(8),

1694-1700.

►Dong, H., Nie, H., Chen, J., Chen, M. (2017).

Dynamic obstacle avoidance for manipulators

using distance calculation and discrete detection,

Robotics and Computer-Integrated

Manufacturing, 49, 98-104.

►Dong, H.,W. (2005). A Triangular Mesh

Reconstruction Algorithm for Points Cloud,

Computer Engineering, 31(15), 30-32.

►Fang, C., Zhao, J. (2010). New Dynamic

Obstacle Avoidance Algorithm with Hybrid

Index Based on Gradient Projection Method,

Journal of Mechanical Engineering, 46(19), 30-

37.

►Gómez-Bravo, F., Carbone, G., Fortes, J. C.

(2012). Collision free trajectory planning for

hybrid manipulators, Mechatronics, 22(6), 836-

851.

►Jia, Q. X. (2010). Path Planning for Space

Manipulator to Avoid Obstacle Based on A~*

Algorithm, Journal of Mechanical Engineering,

46(13), 109-115.

►Jiang, L., Li, G., Zhou, Y., Sun, K., Liu, H.

(2013). Obstacle avoidance control for 7-DOF

redundant manipulators, Optics and Precision

Engineering, 21(7), 1795-1802.

►Keshtkar, M. M. (2017). Energy, exergy

analysis and optimization by a genetic algorithm

of a system based on a solar absorption chiller

with a cylindrical PCM and nano-fluid,

International Journal of Heat and Technology,

35(2), 416-420.

ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 16, ISSUE 1 / 2018

143

►Lee, S. D., Song, J. B. (2016). Sensorless

collision detection based on friction model for a

robot manipulator, International Journal of

Precision Engineering and Manufacturing, 17(1),

11-17.

►Liang, C. H., Zeng, S., Li, Z. X., Yang, D. G.,

Sherif, S. A. (2016). Optimal design of plate-fin

heat sink under natural convection using a

particle swarm optimization algorithm,

International Journal of Heat and Technology,

34(2), 275-280.

►Liu, L. F., Wang, Y. J. (1996). A Three-

Dimensional Algorithm on Detecting Collision

Between Robot and Its Environment, ROBOT,

18(1), 50-54.

►Qi, R. L., Zhang, W. J., Wang, T .J. (2014).

An Obstacle Avoidance Trajectory Planning

Scheme for Space Manipulators Based on

Genetic Algorithm, ROBOT, 36(3), 263-270.

►Qian, K., Jia, K., Song, X. (2015). Robot

manipulator avoidance planning based on low-

dimensional mapping and Q-learning, Journal of

Huazhong University of Science & Technology,

43, 468-472.

►Rubio, F., Llopis-Albert, C., Valero, F., Suñer,

J. L. (2016). Industrial robot efficient trajectory

generation without collision through the

evolution of the optimal trajectory, Robotics and

Autonomous Systems, 86, 106-112.

►Shi, E., Chen, M., Li, J., Huang, Y. (2014).

Research on Method of Global Path-planning for

Mobile Robot Based on Ant-colony Algorithm,

Transactions of The Chinese Society of

Agricultural Machinery, 45(6), 53-57.

►Tian, H. B., Ma, H. W., Juan, W. (2013).

Workspace and Structural Parameters Analysis

for Manipulator of Serial Robot, Transactions of

The Chinese Society of Agricultural Machinery,

44(4), 196-201.

►Wang, S. K., Zhu, L., Wang, J. Z. (2015). Path

paln of 6-DOF robot manipulators in obstacle

environment based on navigation potential

function, Transactions of Beijing Institute of

Technology, 35(2), 186-191.

►Wang, T. C., Xie, Y. Z. (2016). BP-GA data

fusion algorithm studies oriented to smart home,

Mathematical Modelling of Engineering

Problems, 3(3), 135-140.

►Xiao, G. R., Gan, W. J., Chen, W. T. (2010).

Exchange of Delaunay Tin Betweenmatlab and

Gmt in Crustal Strain Calculation, Journal of

Geodesy and Geodynam Ics, 30(3), 122-126.

►Zhang, J. H., Hu, P., Zhang, X., Liu, J., Liu,

X. (2017). Closed Loop Control Algorithm for

Obstacle Avoidance Based on the

Transformation of Master and Slave Tasks,

Journal of Mechanical Engineering, 53(1), 21-

27.

►Zhu, D. Q,, Yan, M. Z. (2010). Survey on

technology of mobile robot path planning,

Control and Decision, 25(7), 961-967.

