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ABSTRACT: This paper aims to find an optimal obstacle-free path for robot manipulator. 

Therefore, the global planning and the local planning were combined into an organic whole. 

First, the Monte-Carlo method was adopted to construct the Delaunay tetrahedral grid map. 

Then, the Floyd algorithm was employed to find the path of the collision-free global shortest 

path of the Cartesian space in the Delaunay map, that is, develop an obstacle avoidance path 

planning algorithm was developed for robot manipulator. Numerical simulations and 

experiments show that the path planning algorithm can effectively optimize the path of the robot 

manipulator in the Cartesian space and the joint angular space. Suffice it to say that the 

algorithm has great application potential in the robot manipulator control. 
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1 INTRODUCTION 

The manufacturing assembly is a resource-

intensive operation. It consumes lots of manpower 

and time. A possible way to improve the situation 

lies in the development automatic robot assembly. 

Nevertheless, it is still difficult to apply robot 

assembly technology in actual production, due to 

the complex operation path and the lack of accurate 

and efficient path planning ability of existing robot 

manipulators. This calls for the design of a new path 

planning algorithm that can enhance the rationality, 

timeliness and adaptability of robot manipulator 

path planning. 

In the movement space of a robot manipulator, 

the path planning problem can be described as 

finding the optimal or close-to-optimal path from 

the initial state to the target state, provided that the 

robot manipulator will not be stuck by any obstacle. 

There are mainly three kinds of methods for robot 

manipulator path planning: 

First, the algorithms based on artificial 

intelligence algorithms, namely ant colony 

algorithm (Shi et al., 2014), fuzzy algorithm (Chen 

and Zhu, 2011), fish swarm algorithm (Liang et al., 

2016; Xu and Zhu, 2012) and genetic algorithm 

(Keshtkar, 2017; Qi et al., 2014; Gómez-Bravo et 

al., 2012; Wang and Xie, 2016). 

Second, the algorithms based on objective 

function optimization, including gradient projection 

method (Fang and Zhao, 2010), artificial potential 

field method (Wang et al., 2015), sequential 

quadratic programming (nonlinear optimization) 

(Rubio et al., 2016), and parameter manipulability 

optimization (Lee and Song, 2016). 

The above path planning algorithms are featured 

by heavy computation, high complexity and poor 

portability. In particular, the first type of algorithms 

need to correct their parameters based on samples, 

and cannot avoid the trap of local optimum. 

Third, the algorithms based on grid maps and 

moving rules, such as Floyd algorithm, A~* 

algorithm, and Q learning algorithm (Qian et al., 

2015). Among them, the Floyd algorithm is a global 

optimization algorithm with global optimal features. 

The advantage is that the shortest path obtained by 

the algorithm must be the shortest path of the 

Cartesian space in the whole grid (Zhang et al., 

2017). 

In this paper, the global planning and the local 

planning were combined into an organic whole. 

First, the Monte-Carlo method was adopted to 

construct the Delaunay tetrahedral grid map (the 

Delaunay map). Then, the Floyd algorithm was 

employed to find the path of the collision-free 

global shortest path of the Cartesian space in the 

Delaunay map. 

2 MAPPING RELATIONSHIP 

BETWEEN THE CARTESIAN SPACE 

AND THE JOINT ANGULAR SPACE 

OF THE ROBOT MANIPULATOR  

The Delaunay map was built on both the 

Cartesian space and the joint angular space by 

forward kinematic equation 𝑇 0
4  and inverse 

kinematics equation inverse (x, y, z). The robot 
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manipulator has 5 degrees-of-freedom (DOF). The 

D-H coordinates and parameters of the manipulator 

are shown in Figure 1 and Table 1, respectively. 
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Figure 1. Kinematic scheme of 5 DOF manipulator 

 

Table 1. Denavit-Hartenberg parameters of the 5 

DOF manipulator in Figure 1. 

 

i 
Twist angle 

𝛼𝑖−1 

Link length 

𝑎𝑖−1 

Link 

offset 𝑑𝑖 

Joint 

angle 𝜃𝑖 

1 0 0 L1 1 

2 /2 0 0 2 

3 0 L2 0 3 

4 0 L3 0 4 

5 -/2 0 L4 5 

 

The D-H transform equation is generally 

expressed as: 
𝑇𝑖

𝑖−1 =

[

cos 𝜃𝑖 −sin 𝜃𝑖 0 𝑎𝑖−1

cos 𝛼𝑖−1 sin 𝜃𝑖 cos 𝛼𝑖−1 cos 𝜃𝑖 −sin 𝛼𝑖−1 −𝑑𝑖 sin 𝛼𝑖−1

sin 𝛼𝑖−1 sin 𝜃𝑖 sin 𝛼𝑖−1 cos 𝜃𝑖 cos 𝛼𝑖−1 𝑑𝑖 cos𝛼𝑖−1

0 0 0 1

]. 

The forward kinematics equation of the robot 

manipulator was obtained by multiplying the D-H 

equation of each link transformation: 

 𝑇0
4 = [

𝑅 𝑃
0 1

] = [

𝑟11 𝑟12 𝑟13 𝑥
𝑟21 𝑟22 𝑟23 𝑦
𝑟31 𝑟32 𝑟33 𝑧
0 0 0 0

]. 

where:  

𝑥 = cos(𝜃1)(𝐿3 cos(𝜃2 + 𝜃3) + 𝐿2 cos(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4)),  

𝑦 = sin(𝜃1)(𝐿3 cos(𝜃2 + 𝜃3) + 𝐿2 cos(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4)), and  

𝑧 = 𝐿1 + 𝐿3sin(𝜃2 + 𝜃3) + 𝐿2 sin(𝜃2) −
𝐿4 cos(𝜃2 + 𝜃3 + 𝜃4). 

 

The forward kinematics equation represents the 

mapping relationship between the joint angular 

space and the Cartesian space. Then, the inverse 

kinematic equations were derived from the forward 

kinetic equation  𝑇0
4 . The link transformation matrix 

𝐿1 was moved to the left of the forward kinematics 

equation, 𝑇0
4 = 𝑇0

1 𝑇1
2 𝑇2

3 𝑇3
4 . Since the (2, 4) 

elements on both sides of the equation are equal, 

0 = (𝑝𝑦𝑐1 − 𝑝𝑥𝑠1)/(2𝑐1
2 − 1).  

 

𝜃1 = tan−1(
𝑝𝑦

𝑝𝑥
)                                                                 

(1) 

 

Next, the link transformation matrices 𝐿2 and 𝐿3 

were moved to the left side of the forward 

kinematics equation. Sixteen elements of equal 

values were found by comparing the left and right 

sides of the equation: cos(𝜃𝑖) and sin(𝜃𝑖) are 

written in 𝑐𝑖 and 𝑠𝑖, cos(𝜃𝑖 + 𝜃𝑗) and sin(𝜃𝑖 + 𝜃𝑗) 

are written in 𝑐𝑖𝑗 and 𝑠𝑖𝑗, and so on. Hence, the right 

side of the equation can be written as: 

[

𝑐234 𝑠234 0 𝐿3𝑐23 + 𝐿2𝑐2

0 0 −1 0
𝑠234 𝑐234 0 𝐿3𝑠23 + 𝐿2𝑠2

0 0 0 1

]. 

The left side of the equation was divided into 

two sub-matrices: 

[

𝑟11𝑐1𝑐5 − 𝑟12𝑐1𝑠5 + 𝑟21𝑐5𝑠1 − 𝑟22𝑠1𝑠5 𝑟13𝑐1 + 𝑟23𝑠1
𝑟21𝑐1𝑐5 − 𝑟11𝑐5𝑠1 − 𝑟22𝑐1𝑠5 + 𝑟12𝑠1𝑠5 𝑟23𝑐1 − 𝑟13𝑠1

𝑟31𝑐5 − 𝑟32𝑠5 𝑟33

0 0

] 

[

−𝑟12𝑐1𝑐5 − 𝑟12𝑐1𝑠5 − 𝑟22𝑐5𝑠1 − 𝑟21𝑠1𝑠5 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝐿4𝑟23𝑠1 − 𝐿4𝑟13𝑐1
𝑟12𝑐5𝑠1 − 𝑟22𝑐1𝑐5 − 𝑟21𝑐1𝑠5 + 𝑟11𝑠1𝑠5 𝑝𝑦𝑐1 − 𝑝𝑥𝑠1 + 𝐿4𝑟13𝑠1 − 𝐿4𝑟23𝑐1

−𝑟32𝑐5 − 𝑟31𝑠5 𝑝𝑧 − 𝐿1 − 𝐿4𝑟33

0 1

]

 

The following equations can be obtained by 

equalizing (3, 3) elements on both sides of the 

matrix. 

Solving 0 = −𝑟32𝑐5 − 𝑟31𝑠5 yields 

 

𝜃5 = − tan−1 𝑟32

𝑟31
                                                              

(2) 

 

According to the equation on the left and right 

sides of the matrix elements in the fourth column, 

two equations were sorted out as: 

 

𝐿3𝑐23 + 𝐿2𝑐2 = 𝑝𝑥𝑐1 + 𝑝𝑦𝑠1 − 𝐿4𝑟23𝑠1 − 𝐿4𝑟13𝑐1    

(3) 
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𝐿3𝑠23 + 𝐿2𝑠2 = 𝑝𝑧 − 𝐿1 − 𝐿4𝑟33                                   
(4) 

With the sum of two equations’ square, it is 

found that 𝜃3 can be solved. Then, 𝜃3 was 

substituted into any equation to yield 𝜃2. 𝜃3 and 𝜃2 

were substituted into to yield 𝜃4. At this point, 5 

inverse kinematics equations (1-5) 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑥, 𝑦, 𝑧) 

were derived to depict the mapping relationship of 

robot manipulator between the Cartesian space and 

the joint angular space. 

𝑐234 = 𝑟33                                                                   
(5) 

3 OBSTACLE COLLISION 

DETECTION 

Following the concept of “arm plane” proposed 

by Kreutz-Delgado et al., the arm plane was defined 

with such three points as the shoulder joint, the 

elbow joint and the wrist joint (Jiang et al., 2013) 

(Figures 2~3). In this way, the collision detection 

problem was transformed into an obstacle 

intersection problem in the arm plane. The 

intersection of the robot manipulator and the 

obstacle is essentially the polyline intersection of 2 

planes (Dong et al., 2017)  

Figure 3 shows the polylines in two planes, i.e. 

the obstacle plane and the arm plane. If the 

polylines of the 2 planes intersect with each other, it 

means the robot manipulator has collided into an 

obstacle. Then, a four-step process was executed to 

calculate the intersection line between the two 

planes, determine if an intersection occurs by rapid 

rejection test and cross test, and identify the 

intersection position by collision point calculation.  

(1) Determination of polylines on the obstacle 

plane 

The obstacle surface was approximated by a 

number of planes to find the polylines 

𝑞1𝑞2according to the simultaneous equations of the 

obstacle plane and the robot arm plane. Similarly, 

the polylines on the robot arm plane 𝑝1𝑝2 were also 

obtained. 

(2) Rapid rejection test  

Let the rectangle with 𝑝1𝑝2 as the diagonal line 

be 𝑅1, and the rectangle with 𝑞1𝑞2 as the diagonal 

line be 𝑅2. If there is no intersection between 𝑅1and 

𝑅2, the two lines will not have an intersection point 

(Figure 4). 

(3) Cross test 

As shown in  

Figure 4, the intersection means 𝑝1𝑝2 and 𝑞1𝑞2 

must cross each other. The vector cross product 

determines whether the two lines cross by its 

geometric meaning. If 𝑝1𝑝2 crosses 𝑞1𝑞2, the 

vectors 𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and 𝑞1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ are on both sides of vector 

𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, namely: 𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ∙ 𝑞2𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ < 0 

If𝑞1𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  × 𝑞1𝑞2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ = 0, 𝑝1𝑝2 and 𝑞1𝑞2 are collinear. 

Similarly, the intersection of 𝑝1𝑝2 and 𝑞1𝑞2 can be 

judged by: 𝑝1𝑞1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  × 𝑝1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ∙ 𝑞2𝑝1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ × 𝑝1𝑝2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ < 0 

(1) Collision point calculation 

Let us denote the plane determined by 𝑝1𝑝2 and 

𝑞1𝑞2 as plane Π. Among the planes that are 

perpendicular to plane Π, the one passing through 

 𝑝1𝑝2 is denoted as plane Π1, and the one passing 

through 𝑞1𝑞2 is denoted as plane Π2. If there is a 

common point for the three planes, it means the 

three planes intersect each other, and that 𝑝1𝑝2 

crosses 𝑞1𝑞2. Then, the collision point can be 

obtained by the equations of these planes. 

 

 

Figure 2. Three-dimensional model of manipulator 

obstacle 

 

manipulator

obstacle

 

 

Figure 3. Projection Model of Robot manipulator and 

obstacle in Arm Plane 

 

 

Figure 4. A case of rapid rejection test and crossover 

test 
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4 MAP BUILDING FOR PATH 

PLANNING 

To build a map for path planning, the 

surrounding area of the robot must be divided into 

free movement space and restricted space. The 

popular map building methods include road 

marking and grid meshing (Zhu and Yan, 2010). To 

find a feasible path map for finding the shortest path 

in space, the working space of the robot 

manipulator should be converted to the feasible path 

in light of the manipulator model and obstacle 

model (Jia, 2010). 

Monte-Carlo point cloud data generation 

The random point cloud data generated by the 

Monte-Carlo method can directly map the points in 

the joint angular space to the Cartesian space. If the 

cloud is dense enough, the manipulator workspace 

can be well fitted. Instead of the nonlinear inverse 

kinematics equation, the forward kinematics 

equation was relied on to easily obtain the position 

data of each discrete point in the joint angular space 

and the Cartesian space (Tian et al., 2013). 

Focusing on each joint angle feasible region 

(𝜃min, 𝜃max), the point cloud data were generated 

based on the uniform distribution of random 

number function 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝜃min, 𝜃max, 𝑛) of the 

Monte-Carlo algorithm. The joint point set 

{𝜃1, 𝜃2, 𝜃3, 𝜃4} was generated in the joint angular 

space and substituted into the D-H forward 

kinematics equation 𝑇0
4  to get the Cartesian 

coordinates of the manipulator set {𝑥, 𝑦, 𝑧}. 
These random discrete values are the point of the 

Cartesian workspace of the robot manipulator 

combined with the angle of the random discrete 

point in the joint angular space. 

As shown in Figure 5, the robot manipulator 

often does not collide into obstacles at the start of 

the operation. In this case, the detection plane 

perpendicular to the arm plane should be placed at 

the middle of the obstacle and the manipulator (Liu 

and Wang, 1996). Once the manipulator passes 

through the detection plane, it is necessary to 

determine if there is a collision by geometric 

method. The detection plane is parallel to the 

tangent plane of the obstacle, and can be expressed 

as 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. According to  

Figure 6, 𝑑 is the distance limit of the detection 

plane from the obstacle, and the length of the 3 

connecting links is 𝐿2 +  𝐿3 +  𝐿4. Assuming that 

the connecting links bend as the manipulator moves 

to the tangent plane of the obstacle, the latter will 

move by 𝑑  along the normal vector direction. Then, 

the detection plane equation is 𝑝𝑙𝑎𝑛𝑒𝑡𝑒𝑠𝑡: 𝑎 (𝑥 +
𝑎

√𝑎2+𝑏2
𝑑) + 𝑏 (𝑦 +

𝑏

√𝑎2+𝑏2
𝑑) + c = 0 

 

Figure 5. Three-dimensional schematic diagram of 

the detection plane 

obstacle

Tangent planeDetection plane

d

 

 

Figure 6. Three-dimensional Schematic Diagram of 

Detection Plane 

 

 

 

Figure 7. Monte-Carlo points cloud data 

 

As shown in  

Figure 7, the detection plane divides the point 

cloud into two parts. On the collision side to be 

detected by the detection plane, the obstacle 

collision detection function 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜃1, 𝜃2, 𝜃3, 𝜃4) 
determines the feasibility of the discrete point of the 

point cloud data. If the function is valid at the 

discrete point, the robot manipulator will collide 

into the obstacle during the movement, and the 

discrete point should be removed. By substituting 

the filtered discrete joint points {𝜃1, 𝜃2, 𝜃3, 𝜃4} into 

equation 𝑇0
4 , the discrete point cloud can be 

obtained as: 

 Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}. 
 

Construction of Delaunay tetrahedral grid map 

based on point cloud data 
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As its name suggests, the Delaunay tetrahedral 

map is created by Delaunay tetrahedrons. It is a 
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feasible path map of connecting lines between 

the path points. Based on point cloud data, the map 

can approximate the original workspace with 

accurate grids, fine structure, low redundancy, high 

storage efficiency and convenience in update. The 

rule of Delaunay tetrahedral partition is easy and 

effective. Each tetrahedron is set up by four closest 

points, and do not intersect with each other. The 

even meshing of the cloud data lays a solid basis for 

Floyd path planning algorithm. 

For a 2D plane, the Delaunay triangular map is 

often generated by point-by-point insertion and 

incremental diffusion. The point-by-point insertion 

has been implemented extensively, thanks to its 

time and space efficiency. For instance, the method 

is incorporated into Matlab to compute Delaunay 

division for triangular network generation on the 

discrete cloud. The point-by-point insertion is 

implemented in the following steps. First, all the 

discrete points are traversed to find the set of 

convex hulls, and the outermost edge is computed 

by the Qhull algorithm (Xiao et al., 2010). Then, the 

triangular grids are generated by incremental 

insertion in convex hulls. After that, the discrete 

points are inserted into the new triangles in turn, 

according to the rule of Delaunay 

circumcircle/circumsphere. In this way, the 

Delaunay triangular map is gradually formed 

(Dong, 2005). 

In this research, the 2D Delaunay triangulation 

was promoted to 3D Delaunay tetrahedralization. 

First, the internal structure was also subdivided, but 

into tetrahedrons. The tetrahedral subdivision 

algorithm is similar to the 2D Delaunay 

trigonometric algorithm. The new vertex was 

gradually added to the set of spatial points before 

applying the rule of Delaunay circumcircle / 

circumsphere. When a new point was added to the 

Delaunay grid, the new elements whose 

circumcircle passes through the point were removed 

to form a new section. In this way, a Delaunay 

tetrahedral grid map was formed eventually (Figure 

8). Then, the vertices of the tetrahedrons in the 

Delaunay map were numbered, and the map of 

feasible paths for robot manipulator space 

𝐷𝑒𝑙𝑎𝑢𝑛𝑛𝑦(𝑥, 𝑦, 𝑧) was formed (Figure 9). 

 

Figure 8. Delaunay Triangle cell grid 

5 OBSTACLE AVOIDANCE PATH 

PLANNING ALGORITHM 

The path planning algorithm is often 

implemented by path search in the Cartesian space. 

The inverse kinematics equation 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝑥, 𝑦, 𝑧) 

should be called. However, the path search has to 

deal with a gigantic amount of data, and may fall 

into the dead loop. To solve the problem, the Floyd 

algorithm was introduced to optimize the individual 

path points, and realize the coarse and fine 

adjustments of the obstacle at different positions of 

the manipulator. 

Floyd algorithm based on Delaunay grid map 

Based on the Delaunay grid map, the Floyd 

method can compute the joint angle data of the path 

point directly from point cloud  
 Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}, rather 

than call the inverse kinematics equation multiple 

times. In this way, the method greatly reduces the 

complexity and computing load of the path planning 

for the robot manipulator. 

The Delaunay grid transforms the discrete cloud 

into a geometric body of tetrahedrons. Concerning 

the distance matrix 𝑑𝑖𝑠𝑡 of tetrahedral edge length, 

the Floyd dynamic programming aims to find the 

starting point and the target point. Let 

𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖](𝑗) be the length of the shortest path 

from starting point 𝑖 to target point 𝑗, with  𝑘 being 

any tetrahedral vertex passing through the path. For 

any k> 0, there are two possible reasons that the 

shortest path between 𝑖 and 𝑗 does not exceed  𝑘: 

the path either contains the intermediate vertex  𝑘 or 

does not contain the vertex. In the first case, the 

path length equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑘] +
𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑘](𝑗). In the second case, the path 

length equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑘] + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑘](𝑗). 
Following this train of thought, the Floyd dynamic 

programming algorithm was established with 

array 𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖](𝑗) being the shortest path length 

in the iterative process ( 

Figure 9). The iteration formula is as follows: 

 

{
𝑙𝑒𝑛𝑔𝑡ℎ0[𝑖][𝑗] = 𝑑𝑖𝑠𝑡𝑖𝑗

𝑙𝑒𝑛𝑔𝑡ℎ𝑘[𝑖][𝑗] = min{𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗], 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗] + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘−1[𝑖][𝑗]}  0 ≤ 𝑘 ≤ 𝑛 − 1
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Figure 9. Delaunay tetrahedral mesh map 

 

Then, the shortest path between the starting and 

target points was sought for on the Delaunay 

tetrahedral grid map, and the joint angle of all path 

points were obtained by the Monte-Carlo point 

cloud Monte_Carlo{(𝑥, 𝑦, 𝑧)|𝑝(𝜃1, 𝜃2, 𝜃3, 𝜃4)}. 
Path point optimization algorithm 

The planned path points must differ greatly in 

joint angle, due to the random generation of the 

angle by Monte-Carlo method, and the non-unique 

mapping relationship between the Cartesian space 

and the joint angular space. Thus, the inverse 

kinematics equation was applied to optimize the 

joint angle with the minimum sum of adjacent joint 

angle difference 𝑒1
𝑖  and the target point joint angle 

difference 𝑒2
𝑖 . The algorithm is introduced in details 

below. 

Path refining algorithm 

 

Generate cloud points data and Delaunay 

mesh map 

Start

Plan a shortest route by Floyd method  on 

Delaunay mesh map

Adjust the joint angle of waypoints  pointer 

by function Modify(θ1θ2θ3θ4), move to 

the second point

Delete  the point which collide with the 

barrier 

If the difference of joint angle between 

Floyd(pointer)  and θ[i] is smaller than step

Store the joint angle Floyd(pointer) to θ[i],   add 1to 

i, move to next waypoint of Floyd plan,

If the current 

point is target

Add more cloud points, 

set initial joint angle 

data withθ[i]  

Acquire the environmental information, set 

i = 1, set starting joint angle θ[1] 

No
No

Succed

 

 

Figure 10. Flow chart of path refining algorithm 

 

For the same reasons in 5.2, the joint angle 

trajectory is not as smooth and continuous as 

expected, concerning the optimal path obtained by 

Floyd algorithm on the Delaunay map. To 

overcome the defect, the local path points were 

optimized and the joint angle was adjusted by 

𝑚𝑜𝑑𝑖𝑓𝑦(𝜃1, 𝜃2, 𝜃3, 𝜃4) function. Meanwhile, the 

path points were traced back to re-plan the path 

lines if the joint angle of these points fluctuated 

significantly. 

Based on the Monte-Carlo point cloud data, the 

Floyd algorithm was employed to plan the path 

sequence of the current point to the target point in 

the Delaunay grid map until the accuracy reached 

𝑒1
𝑖 < 𝑠𝑡𝑒𝑝 and the target point was arrived at 

(Figure 10). 

The path refining algorithm enhances the 

convergence quality and speed by changing the 

intermediate path point and correcting the path. In 

view of the random generation of Monte-Carlo 
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point cloud data, the global optimal path can be 

produced by making full use of the known 

environmental information and random obstacle 

information. 

6 SIMULATION AND EXPERIMENT 

Overview 

To verify the robot manipulator path planning 

algorithm based on Delaunay map, a 5-DOF space 

manipulator was taken as the target of simulation. 

The D-H coordinates and parameters of the 

manipulator are shown in Figure 11 and Table 2, 

respectively. The obstacle was simulated by a cube 

model (length: 0.1m; width: 0.13m; height 0.1m) 

(Figure 12). 

Table 2. Defined Denavit-Hartenberg parameters 

Link 𝐿1 𝐿2 𝐿3 𝐿4 

Length(cm) 10.3 10.3 12.7 11.5 

 

The kinematics analysis was performed in a 

simulation system programmed in Matlab. The 

system ran on a computer (2.5 GHz CPU; 4GB 

RAM). The Cartesian coordinates of the initial path 

point were (5, 10, 20) with a joint angle of (1.11, 

1.23, -0.13, -4.07), and the target path point 

coordinates were (0, 20, 0) with a joint angle of 

(1.57, 1.02, -1.82, -1.82). Hence, the joint angle 

differenceΔ𝜃 between the initial point and the target 

joint was (0.46, -0.21, -1.68, 2.64).  The differences 

Δ𝜃4and Δ𝜃3 were the larger ones between the two 

points. After obtaining the adjacent joint angle 

difference 𝑒1
𝑖 , the author setΔ𝜃3 with 𝑎𝑏𝑠(𝜃3

𝑖 −

𝜃3
𝑖−1)/5, set Δ𝜃4 with 𝑎𝑏𝑠(𝜃4

𝑖 − 𝜃4
𝑖−1)/10 and 

𝑠𝑡𝑒𝑝 = 0.8. Table 3 shows the joint angle of the 

path point generated by the first iteration of the path 

optimization. 

Table 3. The path point of the joint angle after first 

path planning  

Joint angle of waypoint 𝜃1 𝜃2 𝜃3 𝜃4 

1 1.11 1.23 -0.13 -4.07 

2 1.17 0.96 -0.03 -4.47 

3 1.67 0.87 -0.98 -4.23 

4 1.69 1.21 -1.52 -3.55 

5 1.58 1.56 -1.87 -2.84 

6 1.73 1.54 -1.89 -2.38 

7 1.57 1.02 -1.82 -1.82 

 

 

 

Figure 11. End of the actuator track diagram 

 

 

 

Figure 12. Optimized Robot manipulator pose series 

during a path to avoid obstacle 

For batter accuracy, at the completion of the first 

path planning, the step size was reduced to step/2 

from the point int((i+1)/2) of the first path, and the 

first path was divided into two segments: (1, 

int((i+1)/2) and (int((i+1)/2, i). The initially planned 

path and the optimized path are given in Figures 11 

and 12, respectively. 

6.1 Experimental validation 

The target manipulator is an industrial serial 

manipulator, whose features have been extensively 

explored in the reference (Gómez-Bravo et al., 

2012). Thus, the experimental validation mainly 

focuses on the application of our algorithm on the 
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arm end movement along the planned path. The 

obstacle was a 0.1m0.1m0.13m cuboid. The end 

points of the manipulator were set as point (5, 10, 

20) and point (0, 20, 0). Under the given conditions, 

our algorithm was implemented on the serial 

manipulator. The angle point sequence of the path 

points is recorded in Figure 13. 

During the test, the manipulator moved swiftly 

and smoothly from the starting point to the target 

point without hitting the obstacle. The results prove 

that speed and effect of our obstacle avoidance path 

planning algorithm. Suffice it to say that the 

algorithm has great application potential in the 

robot manipulator control. 

 

 

Figure 13. Snapshots of manipulator operation during 

a path to avoid a cylindrical obstacle 

7 CONCLUSION 

In this paper, the global planning and the local 

planning were combined into an organic whole. 

First, the Monte-Carlo method was adopted to 

construct the Delaunay tetrahedral grid map. Then, 

the Floyd algorithm was employed to find the path 

of the collision-free global shortest path of the 

Cartesian space in the Delaunay map. In other 

words, an obstacle avoidance path planning 

algorithm was developed for robot manipulator. 

The innovation points of this research are as 

follows. First, the joint angle of the Cartesian space 

point was directly acquired and the optimization 

range was narrowed down by using the point cloud 

data obtained by Monte-Carlo method as the path 

points in path planning. Second, the Delaunay 

tetrahedral mesh map quickly generated the feasible 

paths of the manipulator in the Cartesian space. 

Third, the map generated by the Monte-Carlo 

method made full use of the known environmental 

information, produced the global optimal path, and 

tackled the obstacle information in a timely manner. 

Fourth, the repeated use of our algorithm optimized 

the path points with severely fluctuating joint 

angles, and led to the satisfactory trajectory of the 

robot manipulator. 

However, this research has not predicted the 

next state of the manipulator in an environment with 

moving obstacles. In light of our algorithm, the 

long-term moving-obstacle avoidance path planning 

will be discussed in further research. 

8 ACKNOWLEDGEMENTS  

This work is supported primarily by the National 

Key R&D Program of China with 

no.2017YFC0806608, Funding of Innovation 

Program for Graduate Education of Army Logistics 

University of PLA. 

9 REFERENCES 

► Chen, W. D., Zhu, Q. G. (2011). Mobile 

Robot Path Planning Based on Fuzzy 

Algorithms, Acta Electronica Sinica, 39(4), 971-

974. 

► Xu, X. Q., Zhu, Q. B. (2012). Multi Artificial 

Fish-Swarm Algorithm and a Rule Library 

Based Dynamic Collision Avoidance Algorithm 

for Robot Path Planning in a Dynamic 

Environment, Acta Electronica Sinica, 40(8), 

1694-1700. 

►Dong, H., Nie, H., Chen, J., Chen, M. (2017). 

Dynamic obstacle avoidance for manipulators 

using distance calculation and discrete detection, 

Robotics and Computer-Integrated 

Manufacturing, 49, 98-104. 

►Dong, H.,W. (2005). A Triangular Mesh 

Reconstruction Algorithm for Points Cloud, 

Computer Engineering, 31(15), 30-32. 

►Fang, C., Zhao, J. (2010). New Dynamic 

Obstacle Avoidance Algorithm with Hybrid 

Index Based on Gradient Projection Method, 

Journal of Mechanical Engineering, 46(19), 30-

37. 

►Gómez-Bravo, F., Carbone, G., Fortes, J. C. 

(2012). Collision free trajectory planning for 

hybrid manipulators, Mechatronics, 22(6), 836-

851. 

►Jia, Q. X. (2010). Path Planning for Space 

Manipulator to Avoid Obstacle Based on A~* 

Algorithm, Journal of Mechanical Engineering, 

46(13), 109-115. 

►Jiang, L., Li, G., Zhou, Y., Sun, K., Liu, H. 

(2013). Obstacle avoidance control for 7-DOF 

redundant manipulators, Optics and Precision 

Engineering, 21(7), 1795-1802. 

►Keshtkar, M. M. (2017). Energy, exergy 

analysis and optimization by a genetic algorithm 

of a system based on a solar absorption chiller 

with a cylindrical PCM and nano-fluid, 

International Journal of Heat and Technology, 

35(2), 416-420. 



ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL.  16, ISSUE  1 / 2018 

143 

►Lee, S. D., Song, J. B. (2016). Sensorless 

collision detection based on friction model for a 

robot manipulator, International Journal of 

Precision Engineering and Manufacturing, 17(1), 

11-17. 

►Liang, C. H., Zeng, S., Li, Z. X., Yang, D. G., 

Sherif, S. A. (2016). Optimal design of plate-fin 

heat sink under natural convection using a 

particle swarm optimization algorithm, 

International Journal of Heat and Technology, 

34(2), 275-280. 

►Liu, L. F., Wang, Y. J. (1996). A Three-

Dimensional Algorithm on Detecting Collision 

Between Robot and Its Environment, ROBOT, 

18(1), 50-54. 

►Qi, R. L., Zhang, W. J., Wang, T .J. (2014). 

An Obstacle Avoidance Trajectory Planning 

Scheme for Space Manipulators Based on 

Genetic Algorithm, ROBOT, 36(3), 263-270. 

►Qian, K., Jia, K., Song, X. (2015). Robot 

manipulator avoidance planning based on low-

dimensional mapping and Q-learning, Journal of 

Huazhong University of Science & Technology, 

43, 468-472. 

►Rubio, F., Llopis-Albert, C., Valero, F., Suñer, 

J. L. (2016). Industrial robot efficient trajectory 

generation without collision through the 

evolution of the optimal trajectory, Robotics and 

Autonomous Systems, 86, 106-112. 

►Shi, E., Chen, M., Li, J., Huang, Y. (2014). 

Research on Method of Global Path-planning for 

Mobile Robot Based on Ant-colony Algorithm, 

Transactions of The Chinese Society of 

Agricultural Machinery, 45(6), 53-57. 

►Tian, H. B., Ma, H. W., Juan, W. (2013). 

Workspace and Structural Parameters Analysis 

for Manipulator of Serial Robot, Transactions of 

The Chinese Society of Agricultural Machinery, 

44(4), 196-201. 

►Wang, S. K., Zhu, L., Wang, J. Z. (2015). Path 

paln of 6-DOF robot manipulators in obstacle 

environment based on navigation potential 

function, Transactions of Beijing Institute of 

Technology, 35(2), 186-191. 

►Wang, T. C., Xie, Y. Z. (2016). BP-GA data 

fusion algorithm studies oriented to smart home, 

Mathematical Modelling of Engineering 

Problems, 3(3), 135-140. 

►Xiao, G. R., Gan, W. J., Chen, W. T. (2010). 

Exchange of Delaunay Tin Betweenmatlab and 

Gmt in Crustal Strain Calculation, Journal of 

Geodesy and Geodynam Ics, 30(3), 122-126. 

►Zhang, J. H., Hu, P., Zhang, X., Liu, J., Liu, 

X. (2017). Closed Loop Control Algorithm for 

Obstacle Avoidance Based on the 

Transformation of Master and Slave Tasks, 

Journal of Mechanical Engineering, 53(1), 21-

27. 

►Zhu, D. Q,, Yan, M. Z. (2010). Survey on 

technology of mobile robot path planning, 

Control and Decision, 25(7), 961-967. 

 

 


